Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1355729, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38567140

RESUMEN

Introduction: Partial or complete submergence of trees can occur in natural wetlands during times of high waters, but the submergence events have increased in severity and frequency over the past decades. Taxodium distichum is well-known for its waterlogging tolerance, but there are also numerous observations of this species becoming partially or complete submerged for longer periods of time. Consequently, the aims of the present study were to characterize underwater net photosynthesis (PN) and leaf anatomy of T. distichum with time of submergence. Methods: We completely submerged 6 months old seedling of T. distichum and diagnosed underwater (PN), hydrophobicity, gas film thickness, Chlorophyll concentration and needles anatomy at discrete time points during a 30-day submergence event. We also constructed response curves of underwater PN to CO2, light and temperature. Results: During the 30-day submergence period, no growth or formation new leaves were observed, and therefore T. distichum shows a quiescence response to submergence. The hydrophobicity of the needles declined during the submergence event resulting in complete loss of gas films. However, the Chlorophyll concentration of the needles also declined significantly, and it was there not possible to identify the main cause of the corresponding significant decline in underwater PN. Nevertheless, even after 30 days of complete submergence, the needles still retained some capacity for underwater photosynthesis under optimal light and CO2 conditions. Discussion: However, to fully understand the stunning submergence tolerance of T. distichum, we propose that future research concentrate on unravelling the finer details in needle anatomy and biochemistry as these changes occur during submergence.

2.
Tree Physiol ; 44(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38498333

RESUMEN

Although Taxodium hybrid 'Zhongshanshan' 406 (Taxodium mucronatum Tenore × Taxodium distichum; Taxodium 406) is an extremely flooding-tolerant woody plant, the physiological and molecular mechanisms underlying acclimation of its roots to long-term flooding remain largely unknown. Thus, we exposed saplings of Taxodium 406 to either non-flooding (control) or flooding for 2 months. Flooding resulted in reduced root biomass, which is in line with lower concentrations of citrate, α-ketoglutaric acid, fumaric acid, malic acid and adenosine triphosphate (ATP) in Taxodium 406 roots. Flooding led to elevated activities of pyruvate decarboxylase, alcohol dehydrogenase and lactate dehydrogenase, which is consistent with higher lactate concentration in the roots of Taxodium 406. Flooding brought about stimulated activities of superoxide dismutase and catalase and elevated reduced glutathione (GSH) concentration and GSH/oxidized glutathione, which is in agreement with reduced concentrations of O2- and H2O2 in Taxodium 406 roots. The levels of starch, soluble protein, indole-3-acetic acid, gibberellin A4 and jasmonate were decreased, whereas the concentrations of glucose, total non-structural carbohydrates, most amino acids and 1-aminocyclopropane-1-carboxylate (ACC) were improved in the roots of flooding-treated Taxodium 406. Underlying these changes in growth and physiological characteristics, 12,420 mRNAs and 42 miRNAs were significantly differentially expressed, and 886 miRNA-mRNA pairs were identified in the roots of flooding-exposed Taxodium 406. For instance, 1-aminocyclopropane-1-carboxylate synthase 8 (ACS8) was a target of Th-miR162-3p and 1-aminocyclopropane-1-carboxylate oxidase 4 (ACO4) was a target of Th-miR166i, and the downregulation of Th-miR162-3p and Th-miR166i results in the upregulation of ACS8 and ACO4, probably bringing about higher ACC content in flooding-treated roots. Overall, these results indicate that differentially expressed mRNA and miRNAs are involved in regulating tricarboxylic acid cycle, ATP production, fermentation, and metabolism of carbohydrates, amino acids and phytohormones, as well as reactive oxygen species detoxification of Taxodium 406 roots. These processes play pivotal roles in acclimation to flooding stress. These results will improve our understanding of the molecular and physiological bases underlying woody plant flooding acclimation and provide valuable insights into breeding-flooding tolerant trees.


Asunto(s)
MicroARNs , Taxodium , Transcriptoma , Taxodium/genética , Peróxido de Hidrógeno/metabolismo , Aclimatación , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Carbohidratos , Adenosina Trifosfato/metabolismo , Aminoácidos/metabolismo
3.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38397108

RESUMEN

The conifer Taxodium hybrid 'Zhongshanshan' (T. hybrid 'Zhongshanshan') is characterized by rapid growth, strong stress resistance, and high ornamental value and has significant potential for use in afforestation, landscaping, and wood production. The main method of propagating T. hybrid 'Zhongshanshan' is tender branch cutting, but the cutting rooting abilities of different T. hybrid 'Zhongshanshan' clones differ significantly. To explore the causes of rooting ability differences at a molecular level, we analyzed the transcriptome data of cutting base and root tissues of T. hybrid 'Zhongshanshan 149' with a rooting rate of less than 5% and T. hybrid 'Zhongshanshan 118' with rooting rate greater than 60%, at the developmental time points in this study. The results indicated that differentially expressed genes between the two clones were mainly associated with copper ion binding, peroxidase, and oxidoreductase activity, response to oxidative stress, phenylpropanoid and flavonoid biosynthesis, and plant hormone signal transduction, among others. The expression pattern of ThAP2 was different throughout the development of the adventitive roots of the two clone cuttings. Therefore, this gene was selected for further study. It was shown that ThAP2 was a nuclear-localized transcription factor and demonstrated a positive feedback effect on rooting in transgenic Nicotiana benthamiana cuttings. Thus, the results of this study explain the molecular mechanism of cutting rooting and provide candidate gene resources for developing genetic breeding strategies for optimizing superior clones of T. hybrid 'Zhongshanshan'.


Asunto(s)
Taxodium , Taxodium/genética , Fitomejoramiento , Transcriptoma , Reguladores del Crecimiento de las Plantas/metabolismo , Regulación de la Expresión Génica , Raíces de Plantas/metabolismo
4.
Planta ; 258(3): 66, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37592053

RESUMEN

MAIN CONCLUSION: Taxodium 703 leaves activate fermentation, amino acids metabolism and ROS detoxification, and reduce TCA cycle and ABA biosynthesis in acclimation to prolonged partial submergence stress. Taxodium hybrid 'Zhongshanshan 703' (T. mucronatum × T. distichum; Taxodium 703) is a highly flooding-tolerant woody plant. To investigate the physiological and transcriptional regulatory mechanisms underlying its leaves in acclimation to long-term flooding, we exposed cuttings of Taxodium 703 to either non-flooding (control) or partial submergence for 2 months. The leaf tissues above (AL) and below (BL) flooding-water were separately harvested. Partial submergence decreased concentrations of chlorophyll (a + b) and dehydroascorbate (DHA) and lactate dehydrogenase (LDH) activity in AL, and reduced biomass, concentrations of succinic acid, fumaric acid and malic acid, and transcript levels of genes involved in tricarboxylic acid (TCA) cycle in BL. Under partial submergence, concentrations of starch, malondialdehyde and abscisic acid (ABA) decreased, and also mRNA levels of nine-cis-epoxycarotenoid dioxygenases that are involved in ABA biosynthesis in AL and BL of Taxodium 703. Partial submergence increased O2- content in AL, and improved concentrations of pyruvate and soluble sugars and activities of LDH and peroxidase in BL. In addition, partial submergence increased concentrations of ethanol, lactate, alanine, γ-aminobutyric acid, total amino acids and ascorbic acid (ASA), and ASA/DHA, activities of alcohol dehydrogenases (ADH) and ascorbate peroxidase, as well as transcript levels of ADH1A, ADH1B and genes involved in alanine biosynthesis and starch degradation in AL and BL of Taxodium 703. Overall, these results suggest that Taxodium 703 leaves activate fermentation, amino acids metabolism and reactive oxygen species detoxification, and maintain a steady supply of sugars, and reduce TCA cycle and ABA biosynthesis in acclimation to prolonged partial submergence stress.


Asunto(s)
Taxodium , Aclimatación , Fermentación , Alanina , Aminoácidos , Ácido Ascórbico
5.
J Hazard Mater ; 458: 131857, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37354715

RESUMEN

Microplastics (MPs) have emerged as pollutants of growing concern due to their potential threat to soil ecosystems. While some studies have investigated the effects of MPs on soil nitrogen content, the underlying physicochemical and microbial driving mechanisms still need to be explored. In this study, a six-month incubation experiment was conducted with varying polyethylene MP addition rates: CK (0%, mass ratio), MP0.5 (0.5%), MP1 (1%), MP2 (2%), MP4 (4%), and MP8 (8%). The experiment aimed to examine the effects of MPs on soil nitrogen content, physicochemical properties, nitrogen cycling-related genes, microorganisms, and gross nitrogen transformation rates. The results revealed no significant changes in soil total nitrogen and dissolved total nitrogen. However, dissolved organic nitrogen significantly decreased by 16.00-54.60% following MP addition, while ammonium (NH4+-N, 45.71-271.43%) and nitrate (NO3--N, 43.15-209.54%) nitrogen and microbial biomass nitrogen (46.02-123.70%) significantly increased. Soil pH, bulk density, and soil porosity decreased after MP addition, while soil carbon contents, water-stable macroaggregates, and redox potential increased. The soil microbial community structure changed significantly, and microbial diversity increased under MP treatment. MP addition significantly altered the abundance of soil nitrogen cycling functional genes. The relative abundance of nitrogen fixation and denitrification genes decreased with increasing MP addition rates, while organic degradation and synthesis genes increased. The soil nitrogen cycling functional microbial composition shifted dramatically with increased MP addition. Networks with high addition rates (MP2 +MP4 +MP8) exhibited more total nodes, total links, negative links, node degrees, and modules but shorter average path distances and lower modularity than those with low addition rates (CK +MP0.5 +MP1), reflecting increased network complexity induced by MPs. The gross ammonification rate, NH4+-N consumption and immobilization rates, and NO3--N immobilization rate increased, while the gross nitrification rate and net nitrification rate exhibited an initial increase followed by a decrease with increasing MP addition rates, peaking at MP2. Furthermore, redundancy analysis and structural equation modeling demonstrated that soil physicochemical properties significantly affected soil nitrogen cycling genes and microorganisms, ultimately altering nitrogen content. In conclusion, polyethylene MPs promoted soil nitrogen mineralization and transformation and changed the related functional microorganism community structure, exhibiting a noticeable dose-effect relationship. This study provides deeper insight into the effects of MPs on soil nitrogen cycling.


Asunto(s)
Microbiota , Nitrógeno , Nitrógeno/metabolismo , Plásticos , Microplásticos , Polietileno , Suelo , Microbiología del Suelo
6.
Plants (Basel) ; 12(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36771761

RESUMEN

As a flooding-tolerant tree species, Taxodium distichum has been utilized in afforestation projects and proven to have important value in flooding areas. Alcohol dehydrogenase (ADH), which participates in ethanol fermentation, is essential for tolerance to the anaerobic conditions caused by flooding. In a comprehensive analysis of the ADH gene family in T. distichum, TdADHs were cloned on the basis of whole-genome sequencing, and then bioinformatic analysis, subcellular localization, and gene expression level analysis under flooding were conducted. The results show that the putative protein sequences of 15 cloned genes contained seven TdADHs and eight TdADH-like genes (one Class III ADH included) that were divided into five clades. All the sequences had an ADH_N domain, and except for TdADH-likeE2, all the other genes had an ADH_zinc_N domain. Moreover, the TdADHs in clades A, B, C, and D had a similar motif composition. Additionally, the number of TdADH amino acids ranged from 277 to 403, with an average of 370.13. Subcellular localization showed that, except for TdADH-likeD3, which was not expressed in the nucleus, the other genes were predominantly expressed in both the nucleus and cytosol. TdADH-likeC2 was significantly upregulated in all three organs (roots, stems, and leaves), and TdADHA3 was also highly upregulated under 24 h flooding treatment; the two genes might play key roles in ethanol fermentation and flooding tolerance. These findings offer a comprehensive understanding of TdADHs and could provide a foundation for the molecular breeding of T. distichum and current research on the molecular mechanisms driving flooding tolerance.

7.
Cell ; 186(4): 803-820.e25, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36738734

RESUMEN

Complex diseases often involve the interplay between genetic and environmental factors. Charcot-Marie-Tooth type 2 neuropathies (CMT2) are a group of genetically heterogeneous disorders, in which similar peripheral neuropathology is inexplicably caused by various mutated genes. Their possible molecular links remain elusive. Here, we found that upon environmental stress, many CMT2-causing mutant proteins adopt similar properties by entering stress granules (SGs), where they aberrantly interact with G3BP and integrate into SG pathways. For example, glycyl-tRNA synthetase (GlyRS) is translocated from the cytoplasm into SGs upon stress, where the mutant GlyRS perturbs the G3BP-centric SG network by aberrantly binding to G3BP. This disrupts SG-mediated stress responses, leading to increased stress vulnerability in motoneurons. Disrupting this aberrant interaction rescues SG abnormalities and alleviates motor deficits in CMT2D mice. These findings reveal a stress-dependent molecular link across diverse CMT2 mutants and provide a conceptual framework for understanding genetic heterogeneity in light of environmental stress.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Proteínas con Motivos de Reconocimiento de ARN , Gránulos de Estrés , Animales , Ratones , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Citoplasma , Neuronas Motoras , Proteínas con Motivos de Reconocimiento de ARN/metabolismo
8.
Neurosci Bull ; 39(5): 745-758, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36587114

RESUMEN

Diabetic neuropathic pain (DNP) is the most common disabling complication of diabetes. Emerging evidence has linked the pathogenesis of DNP to the aberrant sprouting of sensory axons into the epidermal area; however, the underlying molecular events remain poorly understood. Here we found that an axon guidance molecule, Netrin-3 (Ntn-3), was expressed in the sensory neurons of mouse dorsal root ganglia (DRGs), and downregulation of Ntn-3 expression was highly correlated with the severity of DNP in a diabetic mouse model. Genetic ablation of Ntn-3 increased the intra-epidermal sprouting of sensory axons and worsened the DNP in diabetic mice. In contrast, the elevation of Ntn-3 levels in DRGs significantly inhibited the intra-epidermal axon sprouting and alleviated DNP in diabetic mice. In conclusion, our studies identified Ntn-3 as an important regulator of DNP pathogenesis by gating the aberrant sprouting of sensory axons, indicating that Ntn-3 is a potential druggable target for DNP treatment.


Asunto(s)
Diabetes Mellitus Experimental , Neuropatías Diabéticas , Neuralgia , Ratones , Animales , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Axones/fisiología , Células Receptoras Sensoriales/metabolismo , Neuralgia/metabolismo
9.
Plants (Basel) ; 11(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36559565

RESUMEN

Taxodium hybrid Zhongshanshan has been widely planted in the Yangtze River Basin (YRB) for soil and carbon conservation, with quantities over 50 million. The objective of this study was to determine how T. hybrid Zhongshanshan plantations affected soil physicochemical properties and bacterial community structure in the YRB, and to examine the consistency of changes by afforestation. Soils under T. Zhongshanshan plantations across six sites of the YRB were compared with soils of adjacent non-forested sites. Soil physicochemical properties and bacterial community structure were determined to clarify edaphic driving factors and reveal the effects of afforestation on bacteria. The results indicated that most soil attributes manifested improvements, e.g., total nitrogen in Jiangxi and Shanghai; available phosphorus in Hubei, Chongqing and Yunnan, exhibited the potential to maintain or ameliorate soil quality. A decrease in soil bulk density caused by plantation was also observed at the expense of soil macro-aggregates augment. Afforestation of T. Zhongshanshan plantation has habitually improved Shannon diversity and Chao1 richness, of which dominant phyla were Proteobacteria, Acidobacteria, and Actinobacteria, and increased the relative abundance of the phyla Proteobacteria and Nitrospirae, and the classes Flavobacteriia, Acidobacteria_Gp5, and Bacilli. We concluded that T. Zhongshanshan plantation can be employed to facilitate soil nutrient accumulation in the YRB, but that the degree, rate and direction of changes in soil attributes are sites dependent. It is recommended that afforestation of nutrient-depleted and less productive lands in the YRB should utilize this fast-growing species in combination with proper fertilization.

10.
Plants (Basel) ; 11(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35406875

RESUMEN

To understand the characteristics of net NH4+ and NO3- fluxes and their relation with net H+ fluxes in Taxodium, net fluxes of NH4+, NO3- and H+ were detected by a scanning ion-selective electrode technique under different forms of fixed nitrogen (N) and experimental conditions. The results showed that higher net NH4+ and NO3- fluxes occurred at 2.1-3.0 mm from the root apex in T. ascendens and T. distichum. Compared to NH4+ or NO3- alone, more stable net NH4+ and NO3- fluxes were found under NH4NO3 supply conditions, of which net NH4+ flux was promoted at least 1.71 times by NO3-, whereas net NO3- flux was reduced more than 81.66% by NH4+ in all plants, which indicated that NH4+ is preferred by Taxodium plants. T. ascendens and T. mucronatum had the largest net NH4+ and total N influxes when NH4+:NO3- was 3:1. 15N Atom% and activities of N assimilation enzymes were improved by single N fertilization in the roots of T. distichum. In most cases, net H+ fluxes were tightly correlated with net NH4+ and NO3- fluxes. Thus, both N forms and proportions could affect N uptake of Taxodium. These findings could provide useful guidance for N management for better productivity of Taxodium plants.

11.
Hortic Res ; 9: uhac067, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35480957

RESUMEN

Hibiscus hamabo is a semi-mangrove species with strong tolerance to salt and waterlogging stress. However, the molecular basis and mechanisms that underlie this strong adaptability to harsh environments remain poorly understood. Here, we assembled a high-quality, chromosome-level genome of this semi-mangrove plant and analyzed its transcriptome under different stress treatments to reveal regulatory responses and mechanisms. Our analyses suggested that H. hamabo has undergone two recent successive polyploidy events, a whole-genome duplication followed by a whole-genome triplication, resulting in an unusually large gene number (107 309 genes). Comparison of the H. hamabo genome with that of its close relative Hibiscus cannabinus, which has not experienced a recent WGT, indicated that genes associated with high stress resistance have been preferentially preserved in the H. hamabo genome, suggesting an underlying association between polyploidy and stronger stress resistance. Transcriptomic data indicated that genes in the roots and leaves responded differently to stress. In roots, genes that regulate ion channels involved in biosynthetic and metabolic processes responded quickly to adjust the ion concentration and provide metabolic products to protect root cells, whereas no such rapid response was observed from genes in leaves. Using co-expression networks, potential stress resistance genes were identified for use in future functional investigations. The genome sequence, along with several transcriptome datasets, provide insights into genome evolution and the mechanism of salt and waterlogging tolerance in H. hamabo, suggesting the importance of polyploidization for environmental adaptation.

12.
Plant Sci ; 319: 111260, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35487668

RESUMEN

GRAS proteins are widely distributed plant-specific transcription factors. In this study, we identified 59 GRAS proteins (HhGRASs) from the genomic and transcriptomic datasets of Hibiscus hamabo Sieb. et Zucc. These proteins were phylogenetically divided into nine subfamilies. RNA-seq analysis revealed that most HhGRASs were expressed in response to abiotic stresses. Results from quantitative real-time PCR analysis of nine selected HhGRASs suggested that HhGRAS14 was significantly upregulated under multiple abiotic stresses; therefore, this gene was selected for further study. Silencing HhGRAS14 in H. hamabo reduced the tolerance to drought and salt stress, while overexpression in Arabidopsis thaliana significantly increased the tolerance to drought and salt and reduced the sensitivity to abscisic acid (ABA). In summary, we analyzed the GRAS family of proteins in semi-mangrove plants for the first time and identified a gene that responds to drought and salt stress, which provided the basis for a comprehensive analysis of GRAS genes and insight into the abiotic stress response mechanism in H. hamabo.


Asunto(s)
Arabidopsis , Hibiscus , Arabidopsis/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Hibiscus/genética , Plantas Modificadas Genéticamente/genética , Tolerancia a la Sal/genética
13.
Int J Mol Sci ; 23(6)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35328474

RESUMEN

NAC transcription factor is one of the largest plant gene families, participating in the regulation of plant biological and abiotic stresses. In this study, 182 NAC proteins (HhNACs) were identified based on genomic datasets of Hibiscus hamabo Sieb. et Zucc (H. hamabo). These proteins were divided into 19 subfamilies based on their phylogenetic relationship, motif pattern, and gene structure analysis. Expression analysis with RNA-seq revealed that most HhNACs were expressed in response to drought and salt stress. Research of quantitative real-time PCR analysis of nine selected HhNACs supported the transcriptome data's dependability and suggested that HhNAC54 was significantly upregulated under multiple abiotic stresses. Overexpression of HhNAC54 in Arabidopsis thaliana (A. thaliana) significantly increased its tolerance to salt. This study provides a basis for a comprehensive analysis of NAC transcription factor and insight into the abiotic stress response mechanism in H. hamabo.


Asunto(s)
Arabidopsis , Hibiscus , Arabidopsis/genética , Arabidopsis/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Hibiscus/genética , Hibiscus/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Front Oncol ; 11: 738323, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868932

RESUMEN

Photodynamic therapy (PDT) is a low invasive antitumor therapy with fewer side effects. On the other hand, immunotherapy also has significant clinical applications in the treatment of cancer. Both therapies, on their own, have some limitations and are incapable of meeting the demands of the current cancer treatment. The efficacy of PDT and immunotherapy against tumor metastasis and tumor recurrence may be improved by combination strategies. In this review, we discussed the possibility that PDT could be used to activate immune responses by inducing immunogenic cell death or generating cancer vaccines. Furthermore, we explored the latest advances in PDT antitumor therapy in combination with some immunotherapy such as immune adjuvants, inhibitors of immune suppression, and immune checkpoint blockade.

15.
Cell Res ; 31(11): 1199-1211, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34480124

RESUMEN

Primary cilia extending from mother centrioles are essential for vertebrate development and homeostasis maintenance. Centriolar coiled-coil protein 110 (CP110) has been reported to suppress ciliogenesis initiation by capping the distal ends of mother centrioles. However, the mechanism underlying the specific degradation of mother centriole-capping CP110 to promote cilia initiation remains unknown. Here, we find that autophagy is crucial for CP110 degradation at mother centrioles after serum starvation in MEF cells. We further identify NudC-like protein 2 (NudCL2) as a novel selective autophagy receptor at mother centrioles, which contains an LC3-interacting region (LIR) motif mediating the association of CP110 and the autophagosome marker LC3. Knockout of NudCL2 induces defects in the removal of CP110 from mother centrioles and ciliogenesis, which are rescued by wild-type NudCL2 but not its LIR motif mutant. Knockdown of CP110 significantly attenuates ciliogenesis defects in NudCL2-deficient cells. In addition, NudCL2 morphants exhibit ciliation-related phenotypes in zebrafish, which are reversed by wild-type NudCL2, but not its LIR motif mutant. Importantly, CP110 depletion significantly reverses these ciliary phenotypes in NudCL2 morphants. Taken together, our data suggest that NudCL2 functions as an autophagy receptor mediating the selective degradation of mother centriole-capping CP110 to promote ciliogenesis, which is indispensable for embryo development in vertebrates.


Asunto(s)
Centriolos , Pez Cebra , Animales , Autofagia , Cilios , Femenino , Humanos , Proteínas Asociadas a Microtúbulos/genética , Madres
16.
Medicine (Baltimore) ; 100(29): e26629, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34398019

RESUMEN

ABSTRACT: Currently, the impact of chemotherapy (CT) on survival outcomes in elderly patients with nasopharyngeal carcinoma (NPC) receiving radiation therapy (RT) remains controversial. This retrospective study aims to investigate survival outcomes in a cohort of elderly NPC patients receiving RT alone or together with CT.Clinical data on 529 NPC patients aged 65 years and older extracted from the Surveillance, Epidemiology, and End Results registry (2004-2015) was collected and retrospectively reviewed. In this cohort, 74 patients were treated with RT alone and 455 individuals received RT and CT. We used propensity score matching with a 1:3 ratio to identify correlations between patients based on 6 different variables. Kaplan-Meier analysis was used to evaluate overall (OS) and cancer-specific survival (CSS). The differences in OS and CSS between the 2 treatment groups were compared using the Log-rank test and Cox proportional hazards models.The estimated 5-year OS and CSS rates for all patients were 49.5% and 59.3%, respectively. The combination of RT and CT provided longer OS than RT alone (53.7% vs 36.9%, P = .002), while no significant difference was observed in CSS (61.8% vs 51.7%, P = .074) between the 2 groups. Moreover, multivariate analysis demonstrated that the combination of CT and RT correlated favorably with OS and CSS. Subgroup analyses showed that the combination of RT and CT correlated better with both OS and CSS in patients with stage T3 or N2 or stage III.Among NPC patients aged 65 years and older, treatment with RT and CT provided longer OS than RT alone. Furthermore, the combination of RT and CT showed a better correlation with OS and CSS in NPC patients with stage T3 or N2 or stage III.


Asunto(s)
Quimioterapia/normas , Neoplasias Nasofaríngeas/terapia , Radioterapia/normas , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Quimioterapia/métodos , Quimioterapia/estadística & datos numéricos , Femenino , Geriatría/métodos , Humanos , Masculino , Neoplasias Nasofaríngeas/fisiopatología , Modelos de Riesgos Proporcionales , Radioterapia/métodos , Radioterapia/estadística & datos numéricos , Estudios Retrospectivos , Programa de VERF
17.
Genes (Basel) ; 12(2)2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557242

RESUMEN

The Taxodium hybrid 'Zhongshanshan 406' (T. hybrid 'Zhongshanshan 406') [Taxodium mucronatum Tenore × Taxodium distichum (L.). Rich] has an outstanding advantage in flooding tolerance and thus has been widely used in wetland afforestation in China. Alcohol dehydrogenase genes (ADHs) played key roles in ethanol metabolism to maintain energy supply for plants in low-oxygen conditions. Two ADH genes were isolated and characterized-ThADH1 and ThADH4 (GenBank ID: AWL83216 and AWL83217-basing on the transcriptome data of T. hybrid 'Zhongshanshan 406' grown under waterlogging stress. Then the functions of these two genes were investigated through transient expression and overexpression. The results showed that the ThADH1 and ThADH4 proteins both fall under ADH III subfamily. ThADH1 was localized in the cytoplasm and nucleus, whereas ThADH4 was only localized in the cytoplasm. The expression of the two genes was stimulated by waterlogging and the expression level in roots was significantly higher than those in stems and leaves. The respective overexpression of ThADH1 and ThADH4 in Populus caused the opposite phenotype, while waterlogging tolerance of the two transgenic Populus significantly improved. Collectively, these results indicated that genes ThADH1 and ThADH4 were involved in the tolerance and adaptation to anaerobic conditions in T. hybrid 'Zhongshanshan 406'.


Asunto(s)
Alcohol Deshidrogenasa/genética , Estrés Fisiológico/genética , Taxodium/genética , Transcriptoma/genética , Adaptación Fisiológica/genética , Inundaciones , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas , Raíces de Plantas , Plantones/genética , Plantones/crecimiento & desarrollo , Taxodium/crecimiento & desarrollo , Agua/efectos adversos
18.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35008561

RESUMEN

Hibiscus hamabo Sieb. et Zucc is an important semi-mangrove plant with great morphological features and strong salt resistance. In this study, by combining single molecule real time and next-generation sequencing technologies, we explored the transcriptomic changes in the roots of salt stressed H. hamabo. A total of 94,562 unigenes were obtained by clustering the same isoforms using the PacBio RSII platform, and 2269 differentially expressed genes were obtained under salt stress using the Illumina platform. There were 519 differentially expressed genes co-expressed at each treatment time point under salt stress, and these genes were found to be enriched in ion signal transduction and plant hormone signal transduction. We used Arabidopsis thaliana (L.) Heynh. transformation to confirm the function of the HhWRKY79 gene and discovered that overexpression enhanced salt tolerance. The full-length transcripts generated in this study provide a full characterization of the transcriptome of H. hamabo and may be useful in mining new salt stress-related genes specific to this species, while facilitating the understanding of the salt tolerance mechanisms.


Asunto(s)
Hibiscus/genética , Estrés Salino/genética , Transcriptoma/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Raíces de Plantas/genética , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ARN/métodos
19.
Biosci Rep ; 40(8)2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32662828

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is a 5-year survival rate unsatisfied malignancies. The study aimed to identify the novel diagnostic and prognostic targets for ESCC. Expression profiling (GSE89102, GSE97051, and GSE59973) data were downloaded from the GEO database. Then, differentially expressed (DE) lncRNAs, DEmiRNAs, and genes (DEGs) with P-values < 0.05, and |log2FC| ≥ 2, were identified using GEO2R. Functional enrichment analysis of miRNA-related mRNAs and lncRNA co-expressed mRNA was performed. LncRNA-miRNA-mRNA, protein-protein interaction of miRNA-related mRNAs and DEGs, co-expression, and transcription factors-hub genes network were constructed. The transcriptional data, the diagnostic and prognostic value of hub genes were estimated with ONCOMINE, receiver operating characteristic (ROC) analyses, and Kaplan-Meier plotter, respectively. Also, the expressions of hub genes were assessed through qPCR and Western blot assays. The CDK1, VEGFA, PRDM10, RUNX1, CDK6, HSP90AA1, MYC, EGR1, and SOX2 used as hub genes. And among them, PRDM10, RUNX1, and CDK6 predicted worse overall survival (OS) in ESCC patients. Our results showed that the hub genes were significantly up-regulated in ESCA primary tumor tissues and cell lines, and exhibited excellent diagnostic efficiency. These results suggest that the hub genes may server as potential targets for the diagnosis and treatment of ESCC.


Asunto(s)
Biomarcadores de Tumor/genética , Biología Computacional , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , Factores de Transcripción/genética , Línea Celular Tumoral , Bases de Datos Genéticas , Neoplasias Esofágicas/mortalidad , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/terapia , Carcinoma de Células Escamosas de Esófago/mortalidad , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/terapia , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Pronóstico , Mapas de Interacción de Proteínas , Transcriptoma
20.
Transl Cancer Res ; 9(7): 4131-4140, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35117782

RESUMEN

BACKGROUND: Esophageal carcinoma (EC) is one of the most deadly malignant tumors in the world. Surgery, combined with chemotherapy or radiotherapy, is the traditional strategy for the treatment of EC. Cisplatin (CDDP) is a common chemotherapy drug widely used to treat EC due to its powerful anti-tumor effect. However, CDDP is subject to intrinsic or acquired resistance in EC cells, which badly hinders the efficacy of chemotherapy. The resistance phenomenon is mostly caused by the p53 mutant in the EC and the low efficiency of the drug delivery system. METHODS: In this study, a specially designed nanomicelle was used to promote the anti-tumor effect of chemotherapy drugs against the CDDP-resistant EC cells. The nanomicelle consisted of miR-34a, doxorubicin (DOX), polyethylene glycol (PEG), and other excipients in an appropriate ratio. RESULTS: The results showed that the nanomicelle could exert significant cell proliferation inhibition and apoptosis-inducing effects in the CDDP-resistant EC cells. The endogenous expression of miR-34a in the CDDP-resistant EC cells was promoted by the incubation with the nanomicelle. After incubation with the nanomicelle, the expression of protein SIRT1 was inhibited, and the expression of caspase3 was promoted significantly in the CDDP-resistant EC cells. CONCLUSIONS: Our results indicate that the specially designed nanomicelle can exert promising anti-tumor effects by introducing miR-34a to inhibit SIRT1 signaling pathway and enhance the efficiency of the drug delivery system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...